
Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL-

PETSc Developers Manual

by

The PETSc Team
http://www.mcs.anl.gov/petsc

This document is intended for use with PETSc 3.0

2006

This work was supported in part by the Mathematical, Infor-
mation, and Computational Sciences Division subprogram of
the Office of Advanced Scientific Computing Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

2

Abstract:

PETSc is a set of extensible software libraries for scientific computation. PETSc is de-
signed using a object-oriented architecture. This means that libraries consist of objects that
have certain, defined functionality. This document defines how these objects are imple-
mented.

This manual discusses the PETSc library design and describes how to develop new library
codes that are compatible with other PETSc components including PETSc 3.0. The idea
is not to develop one massive library that everyone shoves code into; rather, to develop an
architecture that allows many people to (as painlessly as possible) contribute (and maintain)
their own libraries, in a distributed fashion.

The text assumes that you are familiar with PETSc, have a copy of the PETSc users man-
ual, and have access to PETSc source code and documentation (available via http://www.mcs.anl.gov/petsc.)

Please direct all comments and questions regarding PETSc design and development to
petsc-dev@mcs.anl.gov. Note that all bug reports and questions regarding the use of
PETSc should continue to be directed to petsc-maint@mcs.anl.gov.

3

http://www.mcs.anl.gov/petsc

4

Chapter 1

The PETSc Kernel

PETSc provides a variety of basic services for writing scalable, component based libraries;
these are referred to as the PETSc kernel. The source code for the kernel is in src/sys. It
contains systematic support for

• PETSc types

• error handling

• memory management

• profiling

• object management

• file IO

• options database

Each of these is discussed in a section below.

1.1 PETSc Types

For maximum flexibility, the basic data types int, double etc are generally not used in
source code, rather it has:

• PetscScalar

• PetscInt

• PetscMPIInt

• PetscBLASInt

• PetscTruth

• PetscBT - bit storate of logical true and false

5

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscScalar.html#PetscScalar
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscInt.html#PetscInt
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscMPIInt.html#PetscMPIInt
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscBLASInt.html#PetscBLASInt
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscTruth.html#PetscTruth

PetscInt can be set using config/configure.py to be either int (32 bit) or long long (64
bit) to allow indexing into very large arrays. PetscMPIInt are for integers passed to MPI
as counts etc, these are always int since that is what the MPI standard uses. Similarly
PetscBLASInt are for counts etc passed to BLAS and LAPACK routines. These are almost
always int unless one is using a special “64 bit integer” BLAS/LAPACK (this is available,
for example on Solaris systems).

In addition there a special types

• PetscCookie

• PetscErrorCode

• PetscLogEvent

in fact, these are currently always int but their use clarifies the code.

1.2 Implementation of Error Handling

PETSc uses a “call error handler; then (depending on result) return error code” model when
problems are detected in the running code.

The public include file for error handling is include/petscerror.h, the source code for the
PETSc error handling is in src/sys/error/.

1.2.1 Simplified Interface

The simplified C/C++ macro-based interface consists of the following three calls

• SETERRQ(error code,”Error message”);

• CHKERRQ(ierr);

The macro SETERRQ() is given by

return PetscError(LINE , FUNC , FILE , SDIR ,specific,”Error message”);

It calls the error handler with the current function name and location: line number, file and
directory, plus an error codes and an error message. The macro CHKERRQ() is defined by

if (ierr) SETERRQ(ierr,(char *)0);

In addition to SETERRQ() are the macros SETERRQ1(), SETERRQ2(), SETERRQ3()
and SETERRQ4() that allow one to include additional arguments that the message string
is formated. For example,

SETERRQ2(PETSC ERR,”Iteration overflow: its

The reason for the numbered format is because CPP macros cannot handle variable number
of arguments.

6

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscInt.html#PetscInt
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscMPIInt.html#PetscMPIInt
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscBLASInt.html#PetscBLASInt
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscCookie.html#PetscCookie
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscLogEvent.html#PetscLogEvent
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/include/petscerror.h.html
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ.html#SETERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/CHKERRQ.html#CHKERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ.html#SETERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscError.html#PetscError
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/CHKERRQ.html#CHKERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ.html#SETERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ.html#SETERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ1.html#SETERRQ1
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ2.html#SETERRQ2
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ3.html#SETERRQ3
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ2.html#SETERRQ2

1.2.2 Error Handlers

The error handling function PetscError() calls the “current” error handler with the code

PetscErrorCode PetscError(int line,char *func,char* file,char *dir,PetscErrorCode n,int p,char *mess)
{
PetscErrorCode ierr;

PetscFunctionBegin;
if (!eh) ierr = PetscTraceBackErrorHandler(line,func,file,dir,n,p,mess,0);
else ierr = (*eh->handler)(line,func,file,dir,n,p,mess,eh->ctx);
PetscFunctionReturn(ierr);
}

The variable eh is the current error handler context and is defined in src/sys/error/err.c

as

typedef struct EH* EH;
struct EH {
int cookie;
int (*handler)(int, char*,char*,char *,int,int,char*,void *);
void *ctx;
EH previous;
};

One can set a new error handler with the command

int PetscPushErrorHandler(int (*handler)(int,char *,char*,char*,PetscErrorCode,
int,char*,void*),void *ctx)
{
EH neweh = (EH) PetscMalloc(sizeof(struct EH)); CHKPTRQ(neweh);

PetscFunctionBegin;
if (eh) neweh->previous = eh;
else neweh->previous = 0;
neweh->handler = handler;
neweh->ctx = ctx;
eh = neweh;
PetscFunctionReturn(0);
}

which maintains a linked list of error handlers. The most recent error handler is removed
via

int PetscPopErrorHandler(void)
{
EH tmp;

PetscFunctionBegin;

7

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscError.html#PetscError
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscError.html#PetscError
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscPushErrorHandler.html#PetscPushErrorHandler
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscPopErrorHandler.html#PetscPopErrorHandler

if (!eh) PetscFunctionReturn(0);
tmp = eh;
eh = eh->previous;
PetscFree(tmp);
PetscFunctionReturn(0);
}

PETSc provides several default error handlers

• PetscTraceBackErrorHandler(),

• PetscAbortErrorHandler(),

• PetscReturnErrorHandler(),

• PetscEmacsClientErrorHandler(),

• PetscMPIAbortErrorHandler(), and

• PetscAttachDebuggerErrorHandler().

1.2.3 Error Codes

The PETSc error handler take a generic error code. The generic error codes are defined
in include/petscerror.h, the same generic error code would be used many times in the
libraries. For example the generic error code PETSC ERR MEM is used whenever requested
memory allocation is not available.

1.2.4 Detailed Error Messages

In a modern parallel component oriented application code it does not make sense to simply
print error messages to the screen (more than likely there is no “screen”, for example with
Windows applications). PETSc provides the replaceable function pointer

(*PetscErrorPrintf)(“Format”,...);

that, by default prints to standard out. Thus error messages should not be printed with
printf() or fprintf() rather it should be printed with (*PetscErrorPrintf)(). One can direct
all error messages to stderr with the command line options -error_output_stderr.

1.2.5 Exception

I have begun to add support for treating errors as exceptions, see PetscExceptionTry1() This
code may be deprecated.

1.3 Implementation of Profiling

This section provides details about the implementation of event logging and profiling within
the PETSc kernel. The interface for profiling in PETSc is contained in the file include/

petsclog.h. The source code for the profile logging is in src/sys/plog/.

8

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscTraceBackErrorHandler.html#PetscTraceBackErrorHandler
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscAbortErrorHandler.html#PetscAbortErrorHandler
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscReturnErrorHandler.html#PetscReturnErrorHandler
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscEmacsClientErrorHandler.html#PetscEmacsClientErrorHandler
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscMPIAbortErrorHandler.html#PetscMPIAbortErrorHandler
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscAttachDebuggerErrorHandler.html#PetscAttachDebuggerErrorHandler
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorPrintf.html#PetscErrorPrintf
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorPrintf.html#PetscErrorPrintf
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscExceptionTry1.html#PetscExceptionTry1

1.3.1 Profiling Object Create and Destruction

The creation of objects may be profiled with the command

PetscLogObjectCreate(PetscObject h);

which logs the creation of any PETSc object. Just before an object is destroyed, it should
be logged with with

PetscLogObjectDestroy(PetscObject h);

These are called automatically by PetscHeaderCreate() and PetscHeaderDestroy() which are
used in creating all objects inherited off the basic object. Thus these logging routines should
never be called directly.

If an object has a clearly defined parent object (for instance, when a work vector is
generated for use in a Krylov solver), this information is logged with the command,

PetscLogObjectParent(PetscObject parent,PetscObject child);

It is also useful to log information about the state of an object, as can be done with the
command

PetscLogObjectState(PetscObject h,char *format,...);

For example, for sparse matrices we usually log the matrix dimensions and number of
nonzeros.

1.3.2 Profiling Events

Events are logged using the pair

PetscLogEventBegin(int event,PetscObject o1,PetscObject o2,PetscObject o3,PetscObject o4);
PetscLogEventEnd(int event,PetscObject o1,PetscObject o2,PetscObject o3,PetscObject o4);

This logging is usually done in the abstract interface file for the operations, for example,
src/mat/src/matrix.c.

1.3.3 Controling Profiling

Several routines that control the default profiling available in PETSc are are

PetscLogBegin();
PetscLogAllBegin();
PetscLogDump(char *filename);
PetscLogPrintSummary(FILE *fd);

These routines are normally called by the PetscInitialize() and PetscFinalize() routines when
the option -log, -log_summary, or -log_all is given.

1.3.4 Details of the Logging Design

9

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscHeaderCreate.html#PetscHeaderCreate
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscHeaderDestroy.html#PetscHeaderDestroy
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Profiling/PetscLogEventBegin.html#PetscLogEventBegin
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Profiling/PetscLogEventEnd.html#PetscLogEventEnd
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Profiling/PetscLogBegin.html#PetscLogBegin
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Profiling/PetscLogAllBegin.html#PetscLogAllBegin
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Profiling/PetscLogDump.html#PetscLogDump
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Profiling/PetscLogPrintSummary.html#PetscLogPrintSummary
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscInitialize.html#PetscInitialize
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFinalize.html#PetscFinalize

Chapter 2

Basic Object Design

PETSc is designed using strong data encapsulation. Hence, any collection of data (for
instance, a sparse matrix) is stored in a way that is completely private from the application
code. The application code can manipulate the data only through a well-defined interface,
as it does not “know” how the data is stored internally.

2.1 Introduction

PETSc is designed around several classes (e.g. Vec (vectors), Mat (matrices, both dense and
sparse)). These classs are each implemented using C structs, that contain the data and
function pointers for operations on the data (much like virtual functions in classes in C++).
Each classs consists of three parts:

• a (small) common part shared by all PETSc compatible libraries.

• another common part shared by all PETSc implementations of the class and

• a private part used by only one particular implementation written in PETSc.

For example, all matrix (Mat) classs share a function table of operations that may be
performed on the matrix; all PETSc matrix implementations share some additional data
fields,including matrix size; while a particular matrix implementation in PETSc (say com-
pressed sparse row) has its own data fields for storing the actual matrix values and sparsity
pattern. This will be explained in more detail in the following sections. People providing
new class implementations must use the PETSc common part.

We will use $<$class$>$_$<$implementation$>$ to denote the actual source code and
data structures used for a particular implementation of an object that has the $<$class$>$

interface.

2.2 Organization of the Source Code

Each class has

• Its own, application public, include file include/petsc$<$class$>$.h

10

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Vec/Vec.html#Vec
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Mat/Mat.html#Mat
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Mat/Mat.html#Mat
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/size.html#size

• Its own directory, src/$<$class$>$

• A data structure defined in the file include/private/$<$class$>$impl.h. This data
structure is shared by all the different PETSc implementations of the class. For exam-
ple, for matrices it is shared by dense, sparse, parallel, and sequential formats.

• An abstract interface that defines the application callable functions for the class. These
are defined in the directory src/$<$class$>$/interface.

• One or more actual implementations of the classs (for example, sparse uniprocessor and
parallel matrices implemented with the AIJ storage format). These are each in a subdi-
rectory of
src/$<$class$>$/impls. Except in rare circumstances data structures defined here
should not be referenced from outside this directory.

Each type of object, for instance a vector, is defined in its own public include file, by

typedef p <class>* <class>; (for example, typedef p Vec* Vec;).

This organization allows the compiler to perform type checking on all subroutine calls while
at the same time completely removing the details of the implementation of p <class> from
the application code. This capability is extremely important because it allows the library
internals to be changed without altering or recompiling the application code.

Polymorphism is supported through the directory src/$<$class$>$/interface, which
contains the code that implements the abstract interface to the operations on the object.
Essentially, these routines do some error checking of arguments and logging of profiling
information and then call the function appropriate for the particular implementation of
the object. The name of the abstract function is $<$class$>$Operation, for instance,
MatMult() or PCCreate(), while the name of a particular implementation is $<$class$>$O
peration_$<$implementation$>$, for instance, MatMult_SeqAIJ() or PCCreate_ILU

(). These naming conventions are used to simplify code maintenance.

2.3 Common Object Header

All PETSc/PETSc objects have the following common header structures (in include/

private/petscimpl.h)

/* Function table common to all PETSc compatible classs */

typedef struct {
int (*getcomm)(PetscObject,MPI Comm *);
int (*view)(PetscObject,Viewer);
int (*destroy)(PetscObject);
int (*query)(PetscObject,char *,PetscObject *);
int (*compose)(PetscObject,char*,PetscObject);
int (*composefunction)(PetscObject,char *,char *,void *);

11

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Vec/Vec.html#Vec
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Mat/MatMult.html#MatMult
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/PC/PCCreate.html#PCCreate

int (*queryfunction)(PetscObject,char *, void **);
} PetscOps;

/* Data structure header common to all PETSc compatible classs */

struct p <class> {
PetscCookie cookie;
PetscOps *bops;
<class>Ops *ops;
MPI Comm comm;
PetscLogDouble flops,time,mem;
int id;
int refct;
int tag;
DLList qlist;
OList olist;
char *type name;
PetscObject parent;
char *name;
char *prefix;
void *cpp;
void **fortran func pointers;
..........
CLASS-SPECIFIC DATASTRUCTURES
};

Here $<$class$>$ops is a function table (like the PetscOps above) that contains the func-
tion pointers for the operations specific to that class. For example, the PETSc vector class
object looks like

/* Function table common to all PETSc compatible vector objects */

typedef struct VecOps* VecOps;
struct VecOps {
PetscErrorCode (*duplicate)(Vec,Vec*), /* get single vector */
(*duplicatevecs)(Vec,int,Vec**), /* get array of vectors */
(*destroyvecs)(Vec*,int), /* free array of vectors */

(*dot)(Vec,Vec,Scalar*), /* z = xĤ * y */
(*mdot)(int,Vec,Vec*,Scalar*), /* z[j] = x dot y[j] */

(*norm)(Vec,NormType,double*), /* z = sqrt(xĤ * x) */
(*tdot)(Vec,Vec,Scalar*), /* x’*y */
(*mtdot)(int,Vec,Vec*,Scalar*), /* z[j] = x dot y[j] */
(*scale)(Scalar*,Vec), /* x = alpha * x */
(*copy)(Vec,Vec), /* y = x */
(*set)(Scalar*,Vec), /* y = alpha */

12

(*swap)(Vec,Vec), /* exchange x and y */
(*axpy)(Scalar*,Vec,Vec), /* y = y + alpha * x */
(*axpby)(Scalar*,Scalar*,Vec,Vec),/* y = y + alpha * x + beta * y*/
(*maxpy)(int,Scalar*,Vec,Vec*), /* y = y + alpha[j] x[j] */
(*aypx)(Scalar*,Vec,Vec), /* y = x + alpha * y */
(*waxpy)(Scalar*,Vec,Vec,Vec), /* w = y + alpha * x */
(*pointwisemult)(Vec,Vec,Vec), /* w = x .* y */
(*pointwisedivide)(Vec,Vec,Vec), /* w = x ./ y */
(*setvalues)(Vec,int,int*,Scalar*,InsertMode),
(*assemblybegin)(Vec), /* start global assembly */
(*assemblyend)(Vec), /* end global assembly */
(*getarray)(Vec,Scalar**), /* get data array */
(*getsize)(Vec,int*),(*getlocalsize)(Vec,int*),
(*getownershiprange)(Vec,int*,int*),
(*restorearray)(Vec,Scalar**), /* restore data array */
(*max)(Vec,int*,double*), /* z = max(x); idx=index of max(x) */
(*min)(Vec,int*,double*), /* z = min(x); idx=index of min(x) */
(*setrandom)(PetscRandom,Vec), /* set y[j] = random numbers */
(*setoption)(Vec,VecOption),
(*setvaluesblocked)(Vec,int,int*,Scalar*,InsertMode),
(*destroy)(Vec),
(*view)(Vec,Viewer);
};

/* Data structure header common to all PETSc vector classs */

struct p Vec {
PetscCookie cookie;
PetscOps *bops;
VecOps *ops;
MPI Comm comm;
PetscLogDouble flops,time,mem;
int id;
int refct;
int tag;
DLList qlist;
OList olist;
char *type name;
PetscObject parent;
char* name;
char *prefix;
void** fortran func pointers;
void *data; /* implementation-specific data */
int N, n; /* global, local vector size */
int bs;
ISLocalToGlobalMapping mapping; /* mapping used in VecSetValuesLocal() */

13

ISLocalToGlobalMapping bmapping; /* mapping used in VecSetValuesBlockedLocal() */
};

Each PETSc object begins with a PetscCookie which is used for error checking. Each
different class of objects has its value for the cookie; these are used to distinguish between
classes. When a new class is created one needs to call

ierr = PetscCookieRegister(char *classname,PetscCookie *cookie);CHKERRQ(ierr);

For example,

ierr = PetscCookieRegister(”index set”,&IS COOKIE);CHKERRQ(ierr);

Question: Why is a fundamental part of PETSc objects defined in PetscLog
when PETSc Log is something that can be ”turned off” One can verify that an
object is valid of a particular class with

PetscValidHeaderSpecific(x,VEC COOKIE,1);

The third argument to this macro indicates the position in the calling sequence of the function
the object was passed in. This is generate more complete error messages.

To check for an object of any type use

PetscValidHeader(x,1);

Several routines are provided for manipulating data within the header, including

int PetscObjectGetComm(PetscObject object,MPI Comm *comm);

which returns in comm the MPI communicator associated with the specified object.

2.4 Common Object Functions

We now discuss the specific functions in the PETSc common function table.

• getcomm(PetscObject,MPI_Comm *) obtains the MPI communicator associated with
this object.

• view(PetscObject,Viewer) allows one to store or visualize the data inside an object.
If the Viewer is null than should cause the object to print information on the object
to standard out. PETSc provides a variety of simple viewers.

• destroy(PetscObject) causes the reference count of the object to be decreased by
one or the object to be destroyed and all memory used by the object to be freed when
the reference count drops to zero. If the object has any other objects composed with
it then they are each sent a destroy(), i.e. the destroy() function is called on them
also.

14

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscCookie.html#PetscCookie
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Profiling/PetscCookieRegister.html#PetscCookieRegister
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscCookie.html#PetscCookie
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/CHKERRQ.html#CHKERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Profiling/PetscCookieRegister.html#PetscCookieRegister
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/IS/IS.html#IS
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/CHKERRQ.html#CHKERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObjectGetComm.html#PetscObjectGetComm
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/comm.html#comm

• compose(PetscObject,char *name, PetscObject) associates the second object with
the first object and increases the reference count of the second object. If an object with
the same name was previously composed that object is dereferenced and replaced with
the new object. If the second object is null and and object with the same name has
already been composed that object is dereferenced (the destroy() function is called
on it, and that object is removed from the first object); i.e. this is a way to remove,
by name, an object that was previously composed.

• query(PetscObject,char *name, PetscObject *) retrieves an object that was pre-
viously composed with the first object. Retreives a null if no object with that name
was previously composed.

• composefunction(PetscObject,char *name,char *fname,void *func) associates
a function pointer to an object. If the object already had a composed function with the
same name, the old one is replace. If the fname is null it is removed from the object.
The string fname is the character string name of the function; it may include the path
name or URL of the dynamic library where the function is located. The argument
name is a “short” name of the function to be used with the queryfunction() call. On
systems that support dynamic libraries the func argument is ignored; otherwise func

is the actual function pointer.

For example, fname may be libpetscksp:PCCreate_LU or http://www.mcs.anl.

gov/petsc/libpetscksp:PCCreate_LU.

• queryfunction(PetscObject,char *name,void **func) retreives a function pointer
that was associated with the object. If dynamic libraries are used the function is
loaded into memory at this time (if it has not been previously loaded), not when the
composefunction() routine was called.

Since the object composition allows one to only compose PETSc objects with PETSc
objects rather than any arbitrary pointer, PETsc provides the convenience object PetscCon-
tainer, created with the routine PetscContainerCreate(MPI Comm,PetscContainer) to allow
one to wrap any kind of data into a PETSc object that can then be composed with a PETSc
object.

2.5 PETSc Implementation of the Object Functions

This sections discusses how PETSc implements the compose(), query(), composefunction(),
and queryfunction() functions for its object implementations. Other PETSc compatible
class implementations are free to manage these functions in any manner; but generally they
would use the PETSc defaults so that the library writer does not have to “reinvent the
wheel.”

2.5.1 Compose and Query

In src/sys/objects/olist.c PETSc defines a C struct

15

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscContainer.html#PetscContainer
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscContainer.html#PetscContainer
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscContainerCreate.html#PetscContainerCreate
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscContainer.html#PetscContainer

typedef struct PetscOList *PetscOList;
struct PetscOList {
char name[128];
PetscObject obj;
PetscOList next;
};

from which linked lists of composed objects may be constructed. The routines to manipulate
these elementary objects are

int PetscOListAdd(PetscOList *fl,char *name,PetscObject obj);
int PetscOListDestroy(PetscOList fl);
int PetscOListFind(PetscOList fl, char *name, PetscObject *obj)
int PetscOListDuplicate(PetscOList fl, PetscOList *nl);

The function PetscOListAdd() will create the initial PetscOList if the argument fl points
to a null.

The PETSc object compose() and query() functions are then simply (defined in src/

sys/objects/inherit.c)

PetscErrorCode PetscObjectCompose Petsc(PetscObject obj,char *name,PetscObject ptr)
{
PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscOListAdd(&obj->olist,name,ptr); CHKERRQ(ierr);
PetscFunctionReturn(0);
}

PetscErrorCode PetscObjectQuery Petsc(PetscObject obj,char *name,PetscObject *ptr)
{
PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscOListFind(obj->olist,name,ptr);CHKERRQ(ierr);
PetscFunctionReturn(0);
}

2.5.2 Compose and Query Function

PETSc allows one to compose functions by string name (to be loaded later from a dynamic
library) or by function pointer. In src/sys/dll/reg.c PETSc defines the C structure

typedef struct PetscFList* PetscFList;
struct PetscFList {
int (*routine)(void *);
char *path;

16

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscOList.html#PetscOList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscOList.html#PetscOList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscOList.html#PetscOList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscOList.html#PetscOList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscOList.html#PetscOList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscOList.html#PetscOList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscOList.html#PetscOList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObjectCompose.html#PetscObjectCompose
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObjectQuery.html#PetscObjectQuery
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFList.html#PetscFList

char *name;
char *rname; /* name of create function in link library */
PetscFList *next;
};

The PetscFList object is a linked list of function data; each of which contains

• a function pointer (if it has already been loaded into memory from the dynamic library)

• the “path” (directory and library name) where the function exists (if it is loaded from
a dynamic library)

• the “short” name of the function,

• the actual name of the function as a string (for dynamic libraries this string is used to
load in the actual function pointer).

Each PETSc object contains a PetscFList object. The composefunction() and queryfunction()

are given by

PetscErrorCode PetscObjectComposeFunction Petsc(PetscObject obj,char *name,char *fname,void *ptr)
{
PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscFListAdd(&obj->qlist,name,fname,(int (*)(void *))ptr);CHKERRQ(ierr);
PetscFunctionReturn(0);
}

PetscErrorCode PetscObjectQueryFunction Petsc(PetscObject obj,char *name,void **ptr)
{
PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscFListFind(obj->qlist,obj->comm,name,(int(**)(void *)) ptr);CHKERRQ(ierr);
PetscFunctionReturn(0);
}

Because we need to support function composition on systems both with and without
dynamic link libraries the actual source code is a little messy. The idea is that on systems
with dynamic libraries all PETSc “register” and “composefunction” function calls that take
the actual function pointer argument must eliminate this argument in the preprocessor step
before the code is compiled. Otherwise, since the compiler sees the function pointer, it will
compile it in and link in all those functions; thus one could not take advantage of the dynamic
libraries. This is done with macros like the following

#if defined(USE DYNAMIC LIBRARIES)
#define PetscFListAdd(a,b,p,c) PetscFListAdd Private(a,b,p,0)

17

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFList.html#PetscFList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFList.html#PetscFList
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscErrorCode.html#PetscErrorCode
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObjectQueryFunction.html#PetscObjectQueryFunction
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscObject.html#PetscObject

#else
#define PetscFListAdd(a,b,p,c) PetscFListAdd Private(a,b,p,(int (*)(void *))c)
#endif

Thus when the code is compiled with the dynamic link library flag the function pointer
argument is removed from the code; otherwise it is retained. Ugly, but neccessary.

The PetscFListAdd_Private() and all related routines can be found in the directory
src/sys/dll.

In addition to using the PetscFList mechanism to compose functions into PETSc ob-
jects, it is also used to allow registration of new class implementations; for example, new
preconditioners, see Section 4.2.3.

18

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFList.html#PetscFList

Chapter 3

Mimimal Class Standards

This chapter discusses the miminal functionality and format required of any class that is
compatible with PETSc.

19

Chapter 4

PetscObjects

4.1 Elementary Objects: IS, Vec, Mat

4.2 Solver Objects: PC, KSP, SNES, TS

4.2.1 Preconditioners: PC

The base PETSc PC object is defined in the include/private/pcimpl.h include file. A
carefully commented implementation of a PC object can be found in src/ksp/pc/impls/

jacobi/jacobi.c.

4.2.2 Krylov Solvers: KSP

The base PETSc KSP object is defined in the include/private/kspimpl.h include file. A
carefully commented implementation of a KSP object can be found in src/ksp/ksp/impls/

cg/cg.c.

4.2.3 Registering New Methods

See src/ksp/examples/tutorials/ex12.c for an example of registering a new precondi-
tioning (PC) method.

20

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/PC/PC.html#PC
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/PC/PC.html#PC
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/KSP/KSP.html#KSP
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/KSP/KSP.html#KSP
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/PC/PC.html#PC

Chapter 5

Style Guide

The PETSc team uses certain conventions to make our source code consistent. Groups
developing classs compatible with PETSc are, of course, free to organize their own source
code anyway they like.

5.1 Names

Consistency of names for variables, functions, etc. is extremely important in making the
package both usable and maintainable. We use several conventions:

• All function names and enum types consist of words, each of which is capitalized, for
example KSPSolve() and MatGetOrdering().

• All enum elements and macro variables are capitalized. When they consist of several
complete words, there is an underscore between each word.

• Functions that are private to PETSc (not callable by the application code) either

– have an appended _Private (for example, StashValues_Private) or

– have an appended _$<$class$>$Subtype (for example, MatMult_SeqAIJ).

In addition, functions that are not intended for use outside of a particular file are
declared static.

• Function names in structures are the same as the base application function name with-
out the object prefix, and all are in small letters. For example, MatMultTranspose()
has a structure name of multtranspose().

• Each application usable function begins with the name of the class object, for example,
ISInvertPermutation() or MatMult().

5.2 Coding Conventions and Style Guide

Within the PETSc source code, we adhere to the following guidelines so that the code is
uniform and easily maintainable:

21

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/KSP/KSPSolve.html#KSPSolve
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/MatOrderings/MatGetOrdering.html#MatGetOrdering
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Mat/MatMultTranspose.html#MatMultTranspose
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/IS/ISInvertPermutation.html#ISInvertPermutation
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Mat/MatMult.html#MatMult

• All PETSc function bodies are indented two characters.

• Each additional level of loops, if statements, etc. is indented two more characters.

• Wrapping lines should be avoided whenever possible.

• Source code lines do not have a hard length limit, generally we like then less than 150
characters wide.

• The macros SETERRQ() and CHKERRQ() should be on the same line as the routine
to be checked unless this violates the 150 character width rule. Try to make error
messages short, but informative.

• The local variable declarations should be aligned. For example, use the style

int i,j;
Scalar a;

instead of

int i,j;
Scalar a;

• All local variables of a particular type (e.g., int) should be listed on the same line if
possible; otherwise, they should be listed on adjacent lines.

• Equal signs should be aligned in regions where possible.

• There must be a single blank line between the local variable declarations and the body
of the function.

• The first line of the executable statments must be PetscFunctionBegin;

• The following text should be before each function

#undef FUNC
#define FUNC “FunctionName”

this is used by various macros (for example the error handlers) to always know what
function one is in.

• Use PetscFunctionReturn(returnvalue); not return(returnvalue);

• Never put a function call in a return statment; do not do

PetscFunctionReturn(somefunction(...));

• Do not put a blank line immediately after PetscFunctionBegin; or a blank line imme-
diately before PetscFunctionReturn(0);.

22

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/SETERRQ.html#SETERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/CHKERRQ.html#CHKERRQ
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFunctionBegin.html#PetscFunctionBegin
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFunctionReturn.html#PetscFunctionReturn
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFunctionReturn.html#PetscFunctionReturn
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFunctionBegin.html#PetscFunctionBegin
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manualpages/Sys/PetscFunctionReturn.html#PetscFunctionReturn

• Indentation for if statements must be done as as

if () {
....
} else {
....
}

• Never have

if ()
a single indented line

or

for () a single indented line

instead use either

if () a single line

or

if () {
a single indented line
}

• No tabs are allowed in any of the source code.

• The open bracket { should be on the same line as the if () test, for (), etc. never on
its own line. The closing bracket } should always be on its own line.

• In function declaration the open bracket { should be on the next line, not on the same
line as the function name and arguments. This is an exception to the rule above.

• No space after a (or before a). No space before the CHKXXX(). That is, do not
write

ierr = PetscMalloc(10*sizeof(int),&a); CHKERRQ(ierr);

instead write

ierr = PetscMalloc(10*sizeof(int),&a);CHKERRQ(ierr);

• No space after the) in a cast, no space between the type and the * in a caste.

• No space before or after a , in lists That is, do not write

23

int a, b,c;
ierr = func(a, 22.0);CHKERRQ(ierr);

instead write

int a,b,c;
ierr = func(a,22.0);CHKERRQ(ierr);

• Do not use the register directive.

• Never use a local variable counter like PetscInt flops = 0; to accumulate flops and then
call PetscLogFlops() always just call PetscLogFlops() directly when needed.

• Do not use if (rank == 0) or if (v == PETSC NULL) or if (flg == PETSC TRUE)
or if (flg == PETSC FALSE) instead use if (!rank) or if (!v) or if (flg) or if (!flg).

• Do not use #ifdef or #ifndef rather use #if defined(... or #if !defined(...

5.3 Option Names

Since consistency simplifies usage and code maintenance, the names of PETSc routines,
flags, options, etc. have been selected with great care. The default option names are of
the form -$<$class$>$_sub$<$class$>$_name. For example, the option name for the
basic convergence tolerance for the KSP package is -ksp_atol. In addition, operations in
different packages of a similar nature have a similar name. For example, the option name
for the basic convergence tolerance for the SNES package is -snes_atol.

When a Set is included in a function name, it is dropped in the options key. For example
KSPGMRESSetRestart() becomes -ksp_gmres_restart.

24

Chapter 6

The Various Matrix Classes

PETSc provides a variety of matrix implementations, since no single matrix format is appro-
priate for all problems. This section first discusses various matrix blocking strategies, and
then describes the assortment of matrix types within PETSc.

6.0.1 Matrix Blocking Strategies

In today’s computers, the time to perform an arithmetic operation is dominated by the time
to move the data into position, not the time to compute the arithmetic result. For example,
the time to perform a multiplication operation may be one clock cycle, while the time to
move the floating point number from memory to the arithmetic unit may take 10 or more
cycles. To help manage this difference in time scales, most processors have at least three
levels of memory: registers, cache, and random access memory, RAM. (In addition, some
processors have external caches, and the complications of paging introduce another level to
the hierarchy.)

Thus, to achieve high performance, a code should first move data into cache, and from
there move it into registers and use it repeatedly while it remains in the cache or registers
before returning it to main memory. If one reuses a floating point number 50 times while it
is in registers, then the “hit” of 10 clock cycles to bring it into the register is not important.
But if the floating point number is used only once, the “hit” of 10 clock cycles becomes very
noticeable, resulting in disappointing flop rates.

Unfortunately, the compiler controls the use of the registers, and the hardware controls
the use of the cache. Since the user has essentially no direct control, code must be written
in such a way that the compiler and hardware cache system can perform well. Good quality
code is then be said to respect the memory hierarchy.

The standard approach to improving the hardware utilization is to use blocking. That
is, rather than working with individual elements in the matrices, one employs blocks of
elements. Since the use of implicit methods in PDE-based simulations leads to matrices with
a naturally blocked structure (with a block size equal to the number of degrees of freedom
per cell), blocking is extremely advantageous. The PETSc (and BlockSolve95) sparse matrix
representations use a variety of techniques for blocking, including

• storing the matrices using a generic sparse matrix format, but storing additional infor-
mation about adjacent rows with identical nonzero structure (so called I-nodes); this

25

I-node information is used in the key computational routines to improve performance
(the default for the MATSEQAIJ and MATMPIAIJ formats);

• storing the matrices using a fixed (problem dependent) block size (via the MATSE-
QBAIJ and MATMPIBAIJ formats); and

• storing the matrices using a variable block size, that can be different for different parts
of the matrix (supported by the BlockSolve95 matrix format MATMPIROWBS).

The advantage of the first approach is that it is a minimal change from a standard sparse
matrix format and brings a large percent of the improvement one obtains via blocking.
Using a fixed block size gives the best performance, since the code can be hardwired with
that particular size (for example, in some problems the size may be 3, in others 5, etc.),
so that the compiler will then optimize for that size, removing the overhead of small loops
entirely. Variable block size is, of course, appropriate for problems where the natural matrix
block size is different in different parts of the domain. It is slightly less efficient than the
fixed block size code due to overhead of checking block sizes.

The following table presents the floating point performance for a basic matrix-vector
product using these four approaches: a basic compressed row storage format (using the
PETSc runtime options -mat_seqaij -mat_no_unroll); the same compressed row for-
mat using I-nodes (with the option -mat seqaij); a fixed block size code, with a block size
of three for these problems (using the option -mat seqbaij); and the BlockSolve95 variable
block size code (using PETSc option -mat mpirowbs). The rates were computed on one node
of an older IBM SP, using two test matrices. The first matrix (ARCO1), courtesy of Rick
Dean of Arco, arises in multiphase flow simulation; it has 1501 degrees of freedom, 26,131
matrix nonzeros and, a natural block size of 3, and a small number of well terms. The second
matrix (CFD), arises in a three-dimensional Euler flow simulation and has 15,360 degrees of
freedom, 496,000 nonzeros, and a natural block size of 5. In addition to displaying the flop
rates for matrix-vector products, we also display them for triangular solve obtained from an
ILU(0) factorization.

Problem Block size Basic I-node version Fixed block size Variable block size
Matrix-Vector Product (Mflop/sec)

Multiphase 3 27 43 70 22
Euler 5 28 58 90 39

Triangular Solves from ILU(0) (Mflop/sec)
Multiphase 3 22 31 49 15

Euler 5 22 39 65 24

These examples demonstrate that careful implementations of the basic sequential kernels
in PETSc can dramatically improve overall floating point performance, and users can im-
mediately benefit from such enhancements without altering a single line of their application
codes. Note that the speeds of the I-node and fixed block operations are several times that
of the basic sparse implementations. The disappointing rates for the variable block size code
occur because even on a sequential computer, the code performs the matrix-vector products
and triangular solves using the coloring introduced above and thus does not utilize the cache
particularly efficiently. This is an example of improving the parallelization capability at the
expense of using each processor less efficiently.

26

6.0.2 Sequential AIJ Sparse Matrices

The default matrix representation within PETSc is the general sparse AIJ format (also called
the Yale sparse matrix format or compressed sparse row format, CSR).

6.0.3 Parallel AIJ Sparse Matrices

This matrix type, which is the default parallel matrix format; additional implementation
details are given in [?].

6.0.4 Sequential Block AIJ Sparse Matrices

The sequential and parallel block AIJ formats, which are extensions of the AIJ formats
described above, are intended especially for use with multiclass PDEs. The block variants
store matrix elements by fixed-sized dense nb × nb blocks. The stored row and column
indices begin at zero.

The routine for creating a sequential block AIJ matrix with m rows, n columns, and a
block size of nb is

ierr = MatCreateSeqBAIJ(MPI Comm comm,int nb,int m,int n,int nz,int *nnz, Mat *A)

The arguments nz and nnz can be used to preallocate matrix memory by indicating the num-
ber of block nonzeros per row. For good performance during matrix assembly, preallocation
is crucial; however, the user can set nz=0 and nzz=PETSC_NULL for PETSc to dynamically
allocate matrix memory as needed. The PETSc users manual discusses preallocation for the
AIJ format; extension to the block AIJ format is straightforward.

Note that the routine MatSetValuesBlocked() can be used for more efficient matrix as-
sembly when using the block AIJ format.

6.0.5 Parallel Block AIJ Sparse Matrices

Parallel block AIJ matrices with block size �nb can be created with the command

ierr = MatCreateMPIBAIJ(MPI Comm comm,int nb,int m,int n,int M,int N,int d nz,
int *d nnz, int o nz,int *o nnz,Mat *A);

A is the newly created matrix, while the arguments m, n, M, and N, indicate the number of
local rows and columns and the number of global rows and columns, respectively. Either
the local or global parameters can be replaced with PETSC DECIDE, so that PETSc will
determine them. The matrix is stored with a fixed number of rows on each processor, given
by m, or determined by PETSc if m is PETSC DECIDE.

If PETSC DECIDE is not used for m and n then the user must ensure that they are chosen
to be compatible with the vectors. To do this, one first considers the product y = Ax. The m

that one uses in MatCreateMPIBAIJ() must match the local size used in the VecCreateMPI()
for y. The n used must match that used as the local size in VecCreateMPI() for x.

The user must set d_nz=0, o_nz=0, d_nnz=PETSC_NULL, and o_nnz=PETSC_NULL

for PETSc to control dynamic allocation of matrix memory space. Analogous to nz and
nnz for the routine MatCreateSeqBAIJ(), these arguments optionally specify block nonzero

27

information for the diagonal (d_nz and d_nnz) and off-diagonal (o_nz and o_nnz) parts
of the matrix. For a square global matrix, we define each processor’s diagonal portion to
be its local rows and the corresponding columns (a square submatrix); each processor’s off-
diagonal portion encompasses the remainder of the local matrix (a rectangular submatrix).
The PETSc users manual gives an example of preallocation for the parallel AIJ matrix
format; extension to the block parallel AIJ case is straightforward.

6.0.6 Sequential Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each processor
stores its entries in a column-major array in the usual Fortran77 style.

6.0.7 Parallel Dense Matrices

The parallel dense matrices are partitioned by rows across the processors, so that each local
rectangular submatrix is stored in the dense format described above.

6.0.8 Parallel BlockSolve Sparse Matrices

PETSc provides a parallel, sparse, row-based matrix format that is intended for use in
conjunction with the ILU and ICC preconditioners in BlockSolve95.

28

	Abstract
	The PETSc Kernel
	PETSc Types
	Implementation of Error Handling
	Simplified Interface
	Error Handlers
	Error Codes
	Detailed Error Messages
	Exception

	Implementation of Profiling
	Profiling Object Create and Destruction
	Profiling Events
	Controling Profiling
	Details of the Logging Design

	Basic Object Design
	Introduction
	Organization of the Source Code
	Common Object Header
	Common Object Functions
	PETSc Implementation of the Object Functions
	Compose and Query
	Compose and Query Function

	Mimimal Class Standards
	PetscObjects
	Elementary Objects: IS, Vec, Mat
	Solver Objects: PC, KSP, SNES, TS
	Preconditioners: PC
	Krylov Solvers: KSP
	Registering New Methods

	Style Guide
	Names
	Coding Conventions and Style Guide
	Option Names

	The Various Matrix Classes
	Matrix Blocking Strategies
	Sequential AIJ Sparse Matrices
	Parallel AIJ Sparse Matrices
	Sequential Block AIJ Sparse Matrices
	Parallel Block AIJ Sparse Matrices
	Sequential Dense Matrices
	Parallel Dense Matrices
	Parallel BlockSolve Sparse Matrices

